Regular functions with values in a noncommutative algebra using Clifford analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clifford Algebra with Mathematica

The Clifford algebra of a n-dimensional Euclidean vector space provides a general language comprising vectors, complex numbers, quaternions, Grassman algebra, Pauli and Dirac matrices. In this work, we present an introduction to the main ideas of Clifford algebra, with the main goal to develop a package for Clifford algebra calculations for the computer algebra program Mathematica∗. The Cliffor...

متن کامل

Regular and positive noncommutative rational functions

Call a noncommutative rational function r regular if it has no singularities, i.e., r(X) is defined for all tuples of self-adjoint matrices X. In this talk regular noncommutative rational functions r will be characterized via the properties of their (minimal size) linear systems realizations r = c∗L−1b. Our main result states that r is regular if and only if L = A0 + ∑ j Ajxj is privileged. Rou...

متن کامل

Projective Geometry with Clifford Algebra*

Projective geometry is formulated in the language of geometric algebra, a unified mathematical language based on Clifford algebra. This closes the gap between algebraic and synthetic approaches to projective geometry and facilitates connections with the rest of mathematics.

متن کامل

Gravitoelectromagnetism in a complex Clifford algebra

A linear vector model of gravitation is introduced in the context of quantum physics as a generalization of electromagnetism. The gravitoelectromagnetic gauge symmetry corresponds to a hyperbolic unitary extension of the usual complex phase symmetry of electromagnetism. The reversed sign for the gravitational coupling is obtained by means of the pseudoscalar of the underlying complex Clifford a...

متن کامل

Gosset’s Figure in a Clifford Algebra

This note describes a way to realize a “projective” version of Gosset’s 240-vertex semiregular polytope 421 using the Clifford algebra Cl(8) generated by an 8-dimensional vector space equipped with a non-degenerate quadratic form. The 120 vertices of this projective Gosset figure are also seen to coincide with a particular basis for the Lie algebra so(16).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2016

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1607747l